翻訳と辞書 |
Compound of twenty octahedra with rotational freedom : ウィキペディア英語版 | Compound of twenty octahedra with rotational freedom
This uniform polyhedron compound is a symmetric arrangement of 20 octahedra, considered as triangular antiprisms. It can be constructed by superimposing two copies of the compound of 10 octahedra UC16, and for each resulting pair of octahedra, rotating each octahedron in the pair by an equal and opposite angle θ. When θ is zero or 60 degrees, the octahedra coincide in pairs yielding (two superimposed copies of) the compounds of ten octahedra UC16 and UC15 respectively. At a certain intermediate angle, octahedra (from distinct rotational axes) coincide in sets four, yielding the compound of five octahedra. At another intermediate angle the vertices coincide in pairs, yielding the compound of twenty octahedra (without rotational freedom). == Cartesian coordinates == Cartesian coordinates for the vertices of this compound are all the cyclic permutations of : (±2(√3)sinθ, ±(τ−1√2+2τcosθ), ±(τ√2−2τ−1cosθ)) : (±(√2−τ2cosθ+τ−1(√3)sinθ), ±(√2+(2τ−1)cosθ+(√3)sinθ), ±(√2+τ−2cosθ−τ(√3)sinθ)) : (±(τ−1√2−τcosθ−τ(√3)sinθ), ±(τ√2+τ−1cosθ+τ−1(√3)sinθ), ±(3cosθ−(√3)sinθ)) : (±(−τ−1√2+τcosθ−τ(√3)sinθ), ±(τ√2+τ−1cosθ−τ−1(√3)sinθ), ±(3cosθ+(√3)sinθ)) : (±(−√2+τ2cosθ+τ−1(√3)sinθ), ±(√2+(2τ−1)cosθ−(√3)sinθ), ±(√2+τ−2cosθ+τ(√3)sinθ)) where τ = (1+√5)/2 is the golden ratio (sometimes written φ).
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Compound of twenty octahedra with rotational freedom」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|